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A B S T R A C T

Fluidic circuits are a promising recent development in embodied control of soft robots. These
circuits typically make use of highly non-linear soft components to enable complex behaviors
given simple inputs, such as constant flow or pressure. This approach greatly simplifies control,
as it removes the need for external hardware or software. However, detailed fundamental
understanding of the non-linear, coupled fluidic and mechanical behavior of these components
is lacking. Such understanding is needed to guide new designs and increase the reliability of
increasingly autonomous soft robots. Here, we develop an analytical model that captures the
coexistence of a pressure regulation mode and an oscillatory mode in a specific soft hysteretic
valve design, that we previously used to achieve reprogrammable activation patterns in soft
robots. We develop a model that describes the mechanics, fluidics and dynamics of the system by
two coupled non-linear ordinary differential equations. The model shows good agreement with
the experimental evidence, as well as correctly predicts the effect of design changes. Specifically,
we experimentally show that we can remove the regulation mode at low input flow rates by
changing the fluidic response of the valve. Taken together, the present study contributes to
better understanding of system-level behavior of fluidic circuits for controlling soft robots. This
may contribute to the reliability of soft robots with embodied control in future applications
such as autonomous exploration and medical prosthetic devices.

1. Introduction

Soft robots are robots that consist mainly of compliant structures and materials (Ilievski et al., 2011; Rus and Tolley, 2015). This
feature leads to a host of potential advantages over traditional (rigid) robotics, including intrinsic adaptability, safety, low weight,
and resilience (Laschi et al., 2016). A specific challenge with soft robots in general is the design and integration of control systems.
For fluid-driven soft robots in particular (Gorissen et al., 2017), which is our focus in this study, it is not straightforward to embed
typical control elements such as active valves, sensors, and micro-controllers, due to the stiffness mismatch (McDonald and Ranzani,
2021). However, embedded control is a prerequisite for the development of more autonomous, untethered robotic applications (Rich
et al., 2018). Therefore, there is an incentive to develop alternative control strategies that can potentially be fully soft.

For fluid-driven soft robots, a possible solution is to embed what we call fluidic circuits into their soft bodies. These fluidic
circuits can be designed to behave equivalently to electronic control circuits, and can thus be used for basic control, such as actuator
sequencing. Such circuits may consist of elements with linear or monotonic behavior, such as narrow tubes of specific lengths, to
delay the flow of air from one actuator to the next (Vasios et al., 2020). However, a significant step towards more advanced control
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is achieved when non-linearities, and in particular instabilities and hysteresis are harnessed. For example, soft actuators may have
a non-linear pressure-volume relation. This feature can be used to design sets of actuators that activate in a predetermined order
when inflated or deflated (Overvelde et al., 2015; Van Raemdonck et al., 2023), or to store and release energy to make jumping
robots (Gorissen et al., 2020). Gated valves, similar to transistors, expand the range of possible circuits by leveraging decades of
micro-electronics motifs. This approach has been used to create state-machines (Mahon et al., 2019) and fluidic random access
memory (Hoang et al., 2021), for example. All of the above designs, however, still require timed input signals to advance to the
next state, or to initiate the next actuation sequence. A second significant step has led to the current state of the art, where embedded
fluidic control circuits autonomously transform a constant flow or pressure input into cyclic activation of soft actuators. This was first
demonstrated using an amplified microfluidics approach (Wehner et al., 2016), and has been followed by several demonstrations
based on centimeter-sized non-linear valves made by casting (Rothemund et al., 2018; Van Laake et al., 2022; Park et al., 2022;
Jin et al., 2023), 3D-printing techniques (Song et al., 2021; Hubbard et al., 2021; Teichmann et al., 2023; Zhai et al., 2023), or
assembly (Decker et al., 2022). Their larger physical size allows the higher flow rates required to directly drive soft robotic actuators.

Among these non-linear soft robotic valves, a growing number contain domes or other snapping shells (Van Laake et al., 2022;
othemund et al., 2018; Park et al., 2022; Jin et al., 2023). The key characteristic of such shells in this context is the hysteresis, and

n some cases bistability, under pressure loading that is due to a snapping instability. This hysteresis is an essential ingredient for
he generation of periodic, timed actuation of soft actuators. In previous work we used a hysteretic valve based on an elastomeric
pherical cap with a slit at its pole (Van Laake et al., 2022), similar to the cap of a ketchup bottle or shower gel container (Brown,
995). The slit functions as the valve element, as it is closed in the initial (pre-buckling) state, and open after snapping. These
eatures enable the transformation of a constant inflow of air into timed pulses, which we used to periodically activate one or more
oft bending actuators. In this relaxation oscillator circuit, the valve periodically closes and opens as a result of the dynamics of
ressure build-up and release.

Outside of the scope of that work, we observe an interesting effect that we study in more detail in the current work. We observe
hat the valve can be in a different mode, at the same conditions where it can also oscillate. In this mode the valve remains in
etween the open and closed states, and maintains a nearly constant pressure drop for a wide range of flow rates. It is not well
nderstood why this mode, that we call the regulation mode, exists and how we can control in which mode the valve will operate.
n the one hand, the stability of this pressure-regulation mode is intriguing and in itself potentially useful in applications. On the
ther hand, its existence is troublesome when we use the hysteretic valve in applications where we rely on periodic oscillations
or robot control, such as for the actuation of a soft robotic walker (Van Laake et al., 2022), or even a future soft Total Artificial
eart (Arfaee et al., 2022). Therefore, we want to understand under which conditions the pressure regulation and oscillation modes
xist. And more specifically, what enables the key behavior, namely the coexistence of the two different modes at the same inflow
ate.

A possible approach to this problem would be to look at the three-dimensional shell buckling problem in detail. In fact, although
pherical shell snapping has been widely studied for decades, and remains an active topic to date (Reis, 2015; Champneys et al.,
019; Liu et al., 2022), the case of a spherical cap with a slit or cut at its pole under uniform pressure loading has not been treated
o our knowledge. We expect that the cut acts as only a minor imperfection in the initial configuration as long as the shell is in
ompression. On the other hand, during or after the dynamic transition, the cut opens and this will certainly affect the mechanics,
ut it is not exactly known how. In the existing literature, the work that is most relevant to the mechanics of the current problem
s on the effect of small imperfections or probing on shell snapping (Lee et al., 2016; Marthelot et al., 2017; Evkin and Lykhachova,
019; Abbasi et al., 2021). Existing work that is relevant for the dynamics of the current problem includes a study on the dynamics
f snapping structures, including toy ‘poppers’ (Pandey et al., 2014; Taffetani et al., 2018) that are geometrically similar to our
alves. Interestingly, snapping has been shown to slow down near critical points due to loss of stiffness (Gomez et al., 2017). When
isco-elasticity is additionally considered, the effects compound to result in extremely long snapping times (Gomez et al., 2019;
rinkmeyer et al., 2012). Yet, it remains unclear how to take into account the discrete change when the unbuckled dome suddenly

oses stiffness due to loss of contact in the cut.
In this work we aim to capture the essentials of the mechanics in the simplest possible spring model, and we focus on the

ystem–level behavior of the valve in interaction with its fluidic environment. The reason for this approach is the observation that
he regulation mode is not stable without fluid flow. This suggests that we must study the mechanics and dynamics of the whole
ystem to find the key to the system–level bistability. To do so, we develop a system–level model of the valve system with only two
egrees of freedom. The model provides a mechanistic explanation for the existence of the regulation mode and thus suggests how
his mode can be harnessed or suppressed. In a final step, we experimentally demonstrate our findings by creating a modified valve
hat cannot be in the oscillating and regulating states at the same inflow rate. This clearly demonstrates the utility of our simple
odel. Moreover, it is an important step towards the reliable application of hysteretic valves and fluidic circuits in real-world

pplications.
The remainder of the paper is organized as follows. In Section 2, the observed behavior is exemplified by three different

xperiments under varying load cases. In Section 3, we introduce a system–level model that describes the coupled fluidic and
echanical behavior. In Section 4, we analyze potential behaviors of this model to determine if the model describes the behavior

bserved in experiments. In Section 5, we extend the mechanical model by introducing a sudden weakening of the dome upon
uckling, as well as a second local pressure maximum, to account for additional hysteresis. Only after introducing these features, the
odel reproduces the coexistence of oscillation and regulation at the same conditions. In Section 6, we experimentally demonstrate

ur findings by creating and testing a modified valve. We share our concluding remarks in Section 7.
2
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Fig. 1. A dome with a slit can be in two distinct modes at the same conditions. (A) Experimental setup with a bellows actuator and a rigid air chamber
connected before a hysteretic valve, and a silicone tube directly behind the valve. (B) Pressure difference over the valve 𝛥𝑝 = 𝑝0 − 𝑝1 before, during, and after
temporarily pinching the silicone tube. Before pinching, the valve oscillates between its C(i) closed, and C(ii) open states, while the actuator cycles between
C(iii) extended and C(iv) contracted. During D(i) pinching, the actuator temporarily D(ii) oscillates at high frequency. After pinching, the valve is in its E(i)
pressure regulation mode, and the actuator is E(ii) semi-extended.

2. Experimental observations: two distinct modes at the same conditions

In order to demonstrate the potential behaviors that the dome-shaped slit-valve can exhibit, we start with a basic experiment
where we place an air chamber and a soft bellows actuator before a valve, and a silicone tube behind the valve (Fig. 1A). The valve is
3
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made by casting a dome-shaped membrane from silicone elastomer (Dragon Skin 20, Smooth-On) in a 3D printed mold (VeroClear,
Stratasys). Three slits of 1.5mm each are laser-cut at the apex, after which the valve is placed in a 3D-printed holder (Van Laake
et al., 2022). We control the inflow rate 𝑄in to the air chamber using a pair of mass flow controllers (VEMD, Festo (up to 20 SLPM),
in parallel with SLA5850, Brooks Instrument (up to 5 SLPM)), and measure pressures 𝑝0 and 𝑝1 immediately before and behind the
valve, as well as flow rate 𝑄out through the valve. Throughout the first experiment, we apply a fixed inflow rate 𝑄in = 4SLPM to
the air chamber. This setup is similar to the fluidic relaxation oscillator that we previously studied (Van Laake et al., 2022). In order
to reduce production variability, the valves in the current study are uniformly scaled up by a factor two with respect to the earlier
work. Moreover, we add circular ridges inside the valve holder, to improve air-tight sealing and minimize slip of the valve’s edge
inside the holder. The detailed design is shown in Additional Fig. 18.

After applying the inflow, we observe that the valve is in its oscillation mode, where the pressure difference over the valve
𝛥𝑝 = 𝑝0 − 𝑝1 oscillates between 𝛥𝑝 = 5 kPa and 𝛥𝑝 = 77 kPa (yellow shading in Fig. 1B, and Fig. 1C). We then press on the silicone
tube behind the valve (red shading in Fig. 1B, and Fig. 1D), almost but not completely closing it. We observe that the valve oscillates
briefly at high frequency during pinching, then stops oscillating and enters the regulation mode. After completely releasing the tube,
the valve remains in this mode, and 𝛥𝑝 stays constant at a value 𝛥𝑝 ≈ 29 kPa (green shading in Fig. 1B, and Fig. 1E), i.e., between the
lowest and highest pressure observed during oscillation. Therefore, at the same experimental conditions (before and after pinching),
the valve is in two different modes. In a separate experiment we place the same valve in a different holder (with the same clamping
geometry) where we can observe the deformed state directly. Fig. 1C(i), C(ii), and E(i) show the valve in its three different states,
and Fig. 1C(iii), C(iv), and E(ii) show the actuator in the corresponding situations.

To further describe the behavior of the valve in either mode, we perform three additional experiments. In the first additional
experiment, we start from the pressure regulation mode and vary the inflow rate. Starting from an initial value of 𝑄in = 4SLPM, we
first increase the inflow rate to 𝑄in = 25 SLPM, then decrease to 𝑄in = 0SLPM (Fig. 2A). We ensure the valve is in the regulation
mode at the start of the experiment by briefly pinching the silicone tube. We observe that upon sweeping the inflow rate, the pressure
drop over the valve remains almost constant for a wide range of inflow rates, varying between 𝛥𝑝 = 28.1 kPa at 𝑄in = 4SLPM and
𝛥𝑝 = 37.6 kPa at 𝑄in = 25 SLPM (Fig. 2B), i.e., the pressure changes by 34% of the initial value. For comparison, we measured the
pressure drop over a constant restriction (a needle, length 12.7mm, internal diameter 1.54mm). The pressure drop varies between
𝛥𝑝 = 1.85 kPa at 𝑄in = 4SLPM and 𝛥𝑝 = 50 kPa at 𝑄in = 25 SLPM, i.e., 2600%, or 77 times more than the valve in regulation
mode (Additional Fig. 19B). Apparently, in the regulation mode, pressure is modulated by passive adaptation of the shape of the
valve, especially around the opening. At higher flow rates the opening widens, significantly lowering the effective resistance to
airflow, and vice versa. Meanwhile, the overall deformation state of the membrane is in between the initial and buckled states
(Fig. 2D(i)-D(iii)). When we decrease the inflow rate to 𝑄in < 2 SLPM, at 𝑡 ≈ 80 s, the valve exits the pressure regulation mode. As
an example of an application of the pressure regulation mode, it can be leveraged to control the extension of a soft bellows actuator
(Fig. 2D(v)-D(vii)).

In the second additional experiment, we start from the oscillation mode and vary the inflow rate. In response to the same flow
profile shown in Fig. 2A, the oscillation frequency (Fig. 2C and E) initially increases, as the higher inflow rate causes the pressure
in the air chamber to build up faster. This can be seen in Fig. 2F from the decrease in the time the valve is closed during each cycle
𝑇closed. Although 𝑇closed continues to decrease with inflow rate, at the same time 𝑇open increases, such that from 𝑄in > 14 SLPM the
oscillation frequency starts to decrease. Ultimately, when 𝑄in > 20 SLPM, oscillations stop completely, and the valve remains in
the fully open state. This coincides with the inflow rate where the pressure drop over the valve in the open state is high enough
to prevent the valve from buckling back. When we decrease the inflow rate, the system restarts oscillating around the same inflow
rate where it stopped under increasing inflow rate. It remains in this mode until the end of the experiment.

Importantly, a clear difference in the deformed state between the fully open state and the regulation mode can be seen from
comparing photographs and pressure drop over the valve at the same inflow rate 𝑄in = 25 SLPM in Fig. 2D. These are shown for
the regulation mode in Fig. 2D(iii) (corresponding to the blue markers in Fig. 2A and B), and for the fully open state in Fig. 2D(iv)
(corresponding to red markers in Fig. 2A and C).

The aim of the third additional experiment is to measure the quasi-static flow–pressure drop relation of multiple samples of the
same valve design, as a basis for the development of our model, including its parameters. To measure the fully closed state and the
fully open state, we connect the system to a manually controlled pressure regulator (LRP-1/4-10, Festo). This enables us to gradually
vary pressure 𝑝0, in order to accurately determine 𝛥𝑝open and 𝛥𝑝close. Moreover, the pressure regulator can provide higher flow rates
that are beyond the range of our mass flow controller. We gradually increase the pressure 𝑝0 before the valve until the valve opens at
the pressure difference 𝑝0 − 𝑝1 = 𝛥𝑝open. After the valve opens, we determine the flow–pressure drop relation in the fully open state.
Finally, we decrease the pressure until the valve closes again at 𝑝0 − 𝑝1 = 𝛥𝑝close. To measure the valve in its regulation mode, we
connect it to a mass flow controller, and increase and decrease the flow rate, similarly to the experiment shown in Fig. 2B. We repeat
these experiments for six specimens of the same valve design (Additional Fig. 19A). Finally, we record oscillations at 𝑄in = 4SLPM as
a reference dynamic behavior. In Fig. 3 we show the results for a representative specimen, as well as a least-squares fit to 𝛥𝑝(𝑄out) in
the fully open state (dashed curve). Using the fitting function 𝛥𝑝 = 𝑎 (𝑄out)

𝑏 we obtain 𝑎 = (0.032±0.003) kPa∕SLPM𝑏, 𝑏 = 1.68±0.04.
A constant orifice is expected to have 𝛥𝑝 ∼ 𝑄2

out if compressibility effects are negligible (Welty et al., 2007) (compare Additional
Fig. 19B).

Taken together, the experiments show that for a remarkably wide range of inflow rates 2 SLPM < 𝑄in < 20 SLPM the valve can
be in either the regulation mode or the oscillation mode, while for a fixed inflow rate (e.g., 𝑄in = 4SLPM) the valve can be made to
go from the oscillation mode to the regulation mode by briefly pressing on a flexible tube behind the valve. For a range of inflow
4
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Fig. 2. Oscillating and regulation modes for varying inflow rate 𝑄in. (A) Applied inflow rate profile for both experiments. (B) and (C) Pressure difference over
the valve 𝛥𝑝 = 𝑝0 − 𝑝1 for (B) an experiment started from the pressure regulation mode, (C) an experiment started from the oscillation mode. (D) The valve and
actuator in the regulating and fully open states. Colored borders indicate correspondence to markers of the same color in panels (A), (B) and (C). Green (i and
v): regulating state at low inflow rate (𝑄in ≈ 4SLPM). Orange (ii and vi): regulating state at medium inflow rate (𝑄in ≈ 15 SLPM). Blue (iii and vii): regulating
state at high inflow rate (𝑄in ≈ 25 SLPM). Red (iv and viii): fully open state at high inflow rate (𝑄in ≈ 25 SLPM). (E) and (F) Effect of 𝑄in on (E) cycle frequency
(inverse cycle time), (F) partial cycle time. Partial cycle time is the time during each cycle in which the valve is closed (dashed line) or open (solid line).
5
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Fig. 3. Measured quasi-static pressure drop as function of outflow rate 𝛥𝑝(𝑄out). Fully closed (red curve) and fully open (green curve) states are obtained in
a quasi-static experiment under pressure control. Dashed line shows a fit to the open state data (𝛥𝑝 = 0.03 (𝑄out)1.68). The regulation mode (black curve) is
obtained in a quasi-static experiment under flow control. Dynamic oscillations for 𝑄in = 4SLPM (blue curve) are shown as a reference to relate the quasi-static
measurements to the dynamic behavior.

3. Lumped-parameter model of the valve system

With the goal of exploring essential ingredients for coexistence of the pressure regulation and oscillation modes, we develop
a minimal lumped-parameter model. We start with the description of the first order dynamics in the fluidic domain, where the
valve is treated as a variable restriction. Secondly, we define a spring-model with one degree-of-freedom (DOF), to approximate
the equilibrium pressure-displacement behavior of the elastomeric dome. Thirdly, we define simplified dynamics of the mechanical
DOF, that describes the transitions between the open and closed states. Lastly, we explicitly define the variation of the valve orifice
as a function of position of the single DOF of the mechanical spring-model. Combining these four ingredients, we obtain two coupled
non-linear ordinary differential equations (ODEs) that describe the behavior of the system.

3.1. Fluidic model

The fluidic model is schematically shown in Fig. 4A(ii). A source of constant flow rate 𝑄in is connected to a pneumatic capacitor
𝐶0 (i.e., a flexible or rigid air chamber). The valve is placed inline behind the air chamber. When the valve is open, there is an
output flow 𝑄out through the valve. The pressure drop over the valve is 𝛥𝑝 = 𝑝0 − 𝑝1.

We model the behavior of the capacitor linearly, where the standard volume of air 𝑉S is related to pressure 𝑝0 as

𝑉S = 𝐶0𝑝0, (1)

where 𝐶0 is the capacitance in 1∕60SL∕kPa (the unusual unit is a result of using the convenient units SLPM (standard litre per
minute) for flow, kPa for pressure, and seconds for time).

The instantaneous variation of standard volume in the chamber is the difference between input and output flows
d𝑉S
d𝑡

= 𝑄in −𝑄out, (2)

where 𝑄in and 𝑄out are standard flows in SLPM. We assume that the pressure drop over the valve 𝛥𝑝 is proportional to 𝑄2
out, where

the square is expected for flow through a constant orifice (Welty et al., 2007), see also Additional Fig. 19B.

𝛥𝑝 = 𝑅v𝑄
2
out, (3)

where 𝑅v is the restriction of the valve in kPa∕SLPM2, that in experiments and also in our model depends on the state of the valve
(as discussed in Section 3.4). Conversely, output flow through the valve is approximately proportional to the square-root of the
pressure drop

𝑄out = 𝑐v
√

𝛥𝑝, 𝑐v =
√

1∕𝑅v, (4)

where 𝑐v is the conductance of the valve in SLPM/
√

𝑘𝑃𝑎.
From Eqs. (1), (2) and (4) we can write the dynamic equation for the fluidic system

𝐶0
d𝑝0
d𝑡

= 𝑄in − 𝑐v
√

𝛥𝑝. (5)

This can be simplified further if we assume 𝑝1 is constant

𝐶
d𝛥𝑝

= 𝑄 − 𝑐
√

𝛥𝑝, (6)
6
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Fig. 4. Lumped-parameter model of the valve system. (A) Schematic overview of the model. (i) Mechanical spring model of the dome. (ii) Fluidic model. (iii)
Valve conduction model. (B) sketch of pressure 𝑝S, as function of displacement of node 𝑃 . (C) Sketch of the conductance behavior of the valve as a function of
the displacement of node 𝑃 .

which is the case when the valve is venting freely to its surroundings at constant atmospheric pressure. In the general case, Eq. (5)
should be used, for example when a restriction or a second air chamber, such as a soft actuator, is placed behind the valve.

The capacitance 𝐶0 can be obtained from the slope d𝑝0∕d𝑉S in a dedicated experiment, or analytically from the geometrical
volume, using the ideal gas law. For known 𝑄in, 𝐶0 can also be conveniently determined in experiments with a hysteretic valve,
from the slope d𝑝0∕d𝑡 when the valve is closed, i.e., 𝑐v = 0, to also account for some capacitance that exists in the tubing, valve
holder, and the valve itself.

3.2. Mechanics of the dome

Fig. 4A(i) shows a schematic of the model for the mechanics of the valve. A key characteristic of the mechanical response of
our elastomeric dome is the existence of a local pressure maximum followed by a local pressure minimum. This behavior can be
reproduced in a minimal model with only two springs. A linear spring with stiffness 𝑘S and a rotational spring 𝑘R account for
stretching and bending, respectively.

We assume that node 𝑃 is allowed to move only in the horizontal direction. Its position is equal to 𝑥 = −ℎ0 at rest. Node 𝐵 is
constrained in both directions, therefore width 𝑏0 is constant. An external load 𝐹F is applied at node 𝑃 in the horizontal direction.
𝐹S is the opposing reaction force exerted by the structure. With the aim of obtaining an expression for 𝐹S, we write the internal
elastic energy 𝐸 in the system, considering the geometry in Fig. 4A(i)

𝐸 =
𝑘S

(

√

ℎ2 + 𝑏2 −
√

𝑥2 + 𝑏2
)2

+
𝑘R

(

arctan (
ℎ0 ) − arctan (− 𝑥 )

)2
. (7)
7
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The equation of the force exerted by the structure is given by the derivative of the elastic energy along the degree of freedom 𝑥

𝐹S = d𝐸
d𝑥

= −𝑘S

√

ℎ20 + 𝑏
2
0 −

√

𝑥2 + 𝑏20
√

𝑥2 + 𝑏20

𝑥 + 𝑘R
arctan

(

ℎ0∕𝑏0
)

+ arctan
(

𝑥∕𝑏0
)

𝑏0
(

𝑥2∕𝑏20 + 1
) . (8)

We couple the spring model to the fluidic model by assuming the external load 𝐹F is the net force exerted by the pressure
ifference over the valve, acting on the projected area of the valve 𝐴v

𝐹F = 𝐴v𝛥𝑝, 𝐴v = 𝜋𝑏0
2, (9)

nalogously, to transform the spring force 𝐹S to a pressure, we divide by the valve area, such that

𝑝S = 𝐹s∕𝐴v. (10)

We take 𝑏0 to be equal to the physical radius of the valve, and ℎ0 the height of the dome. We then select 𝑘s and 𝑘r such that 𝑝S has a
ocal maximum 𝑝+snap(𝑥

+
snap) and a local minimum 𝑝−snap(𝑥

−
snap) that coincide with the experimentally observed values 𝛥𝑝open and 𝛥𝑝close

n a slow, pressure-controlled experiment (Fig. 3). Note that the positions 𝑥+snap and 𝑥−snap also result from these assumptions and
re somewhat arbitrary. This is a consequence of using a highly simplified spring model for the actual three-dimensional mechanics
f the dome. In Fig. 4B we show the resulting 𝑝S(𝑥) for 𝑏0 = 12mm, ℎ0 = 𝑏0 (1 − cos 𝜃)∕ sin 𝜃 = 9.2mm, 𝑘S = 2.9 × 107 Nmm−1, and
𝑘R = 3.6 × 108 Nmm rad−1. Notice how the negative slope in the force–displacement behavior leads to an instability if the loading is
pressure–controlled. This instability gives rise to the desired hysteresis of the valve. The left and right sections with positive slope
represent the valve in the initial and buckled states, respectively.

3.3. Simplified dynamics of the spring model

We define the transitions between open and closed states of the valve by simplified dynamics of 𝑥. We first write the force
alance for a concentrated mass 𝑚 located at 𝑃

𝐹F = 𝑚d2𝑥
d𝑡2

+ 𝑏 d𝑥
d𝑡

+ 𝐹S, (11)

where 𝑏 is a damping coefficient. To minimize the number of DOFs, we ignore inertial effects, based on the observation that the
transitions occur relatively fast in experiments, so we obtain

d𝑥
d𝑡

= 1
𝑏
(𝐹F − 𝐹S) =

𝐴V
𝑏

(𝛥𝑝 − 𝑝S). (12)

We study the effect of parameter 𝑏 in Section 4.3, where we analyze the stability of the system.

3.4. Valve conductance as function of node position

The second coupling between the spring model and the fluidic model is via the valve conductance. The exact evolution of valve
conductance (see Eq. (4) for its definition) during the opening and closing of the valve is not easily observable. However, we know
that the conductance must vary significantly with 𝑥 to enable the regulation mode, since the pressure drop over the valve varies
little for a wide range of flow rates, while the overall deformation state (associated with 𝑥) also does not change much. Moreover,
we observe that the valve remains hermetically closed (𝑐v = 0) at least until the valve buckles. We define a position 𝑥open where
the valve starts to open (𝑐v > 0 for 𝑥 > 𝑥open). Finally, the experimental data shows that the pressure drop in the fully open state
is approximately proportional to the outflow rate to the power 1.68, as shown in Fig. 3. This exponent, less than 2, implies that
the orifice size continues to grow moderately with increasing position in the fully open state, according to our assumed quadratic
relation between pressure and flow rate Eq. (3). This is consistent with visual observation of the orifice. We can reproduce these
features by the following definition of conductance 𝑐v as function of position 𝑥.

𝑐v =

⎧

⎪

⎨

⎪

⎩

0 𝑥 ≤ 𝑥open

𝑐i
(

1 − 𝑒𝜓
(

𝑥open−𝑥
)
)

+ 𝑠∞ (𝑥 − 𝑥open) 𝑥 > 𝑥open,
(13)

where 𝜓 sets the rate at which 𝑐v approaches the value 𝑐i and 𝑠∞ is the remaining slope for 𝑥 ≫ 𝑥open, as shown in Fig. 4C. For
different values of 𝑥open and 𝜓 , we can determine 𝑐i, and 𝑠∞ by fitting the model to measured values 𝛥𝑝(𝑄in). We study the effect
of these parameters in Section 4.2.

3.5. System model

Combining the fluidic model, the spring model, and the conductance behavior, we obtain the following set of two ordinary
differential equations in 𝛥𝑝 and 𝑥.

d𝛥𝑝
d𝑡

= 1
𝐶0

(

𝑄in − 𝑐v(𝑥)
√

𝛥𝑝
)

, (14)

d𝑥
d𝑡

=
𝐴v
𝑏

(

𝛥𝑝 − 𝑝S(𝑥)
)

, (15)
8

where 𝑐v(𝑥) is defined in Eq. (13) (Fig. 4C), and 𝑝S(𝑥) in Eqs. (8) and (10) (Fig. 4B). Note that all parameters are positive.
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Fig. 5. Three projections of the nullclines of the initial model. (A-C) Nullclines d𝑥∕d𝑡 = 0 (black) and d𝛥𝑝∕d𝑡 = 0 (colored) in the (A) 𝑥–𝛥𝑝 plane, (B) 𝑥–𝑄out
plane, and (C) 𝑄out–𝛥𝑝 plane. Highlights in panel (C) correspond to features of the model that are similar to the experimentally observed behavior as shown in
Fig. 3.

4. Potential behaviors of the initial model

Having established an initial and highly simplified model, we want to determine if the model can describe the observed behavior
in the specific configurations for which we presented the experimental data in Figs. 1, 2 and 4. Therefore, rather than studying the
model behavior for a wide range of parameter values, we fix as many parameters as possible based on the available experimental
data. This is possible for the parameters of the spring model 𝑏0, ℎ0, 𝑘S, and 𝑘R, as well as the parameters that we control in
experiments 𝑄in and 𝐶0. On the other hand, we cannot directly obtain all fluidics parameters 𝑥open, 𝜓 , 𝑐i, 𝑠∞, nor the damping
parameter 𝑏 from measurements. Therefore, we perform parameter scans for these parameters in order to find values that are
compatible with the observed behavior.

The observed behavior we are trying to describe consists of the coexistence of regulation and oscillation for 2 SLPM < 𝑄in <
20 SLPM, and coexistence of regulation and the fully open state for 20 SLPM < 𝑄in < 25 SLPM. The pressure drop over the valve in
the regulation mode varies from 𝛥𝑝 ≈ 25 kPa at relatively low flow, to 𝛥𝑝 ≈ 40 kPa at relatively high flow. Importantly, the regulation
mode is stable for a wide range of flow rates, based on two observations. (1) The valve is attracted to the regulation mode when we
temporarily perturb the system (Fig. 1). This leads to the conclusion that the regulation mode is a stable equilibrium. (2) The valve
remains in the regulation mode when we vary the inflow rate (Fig. 2). This shows that the equilibrium remains stable at different
inflow rates.

Therefore, to explain the regulation mode, we need to find equilibria at a range of pressure values around 𝛥𝑝 ≈ 30 kPa, that are
stable for a range of inflow rates around 2 SLPM < 𝑄in < 25 SLPM, similar to the black curve in Fig. 3. At the same time, there must
exist stable limit cycles, at the same flow rates, that describe the oscillation mode, similar to the blue curve in Fig. 3. To determine
if parameters exist for which the current model can describe both behaviors, we firstly analyze the general existence of equilibria,
using arbitrary parameter values for the fluidics, in Section 4.1. In Section 4.2, we investigate the influence of fluidics parameters
(𝑥open and 𝜓) on the shape of these equilibria. In Section 4.3 we analyze the effect of damping parameter 𝑏 on the stability of the
existing equilibria. Finally, we look at the relation between the existence of stable equilibria (regulation mode) and limit cycles
(oscillation mode).

4.1. System equilibria

To determine all possible equilibria, we begin by looking at the nullclines for 𝛥𝑝 and 𝑥, respectively,
d𝛥𝑝
d𝑡

= 0 ⟺ 𝑄in = 𝑐v(𝑥eq)
√

𝛥𝑝eq, (16)

d𝑥
d𝑡

= 0 ⟺ 𝛥𝑝eq = 𝑝S(𝑥eq). (17)

When the valve is closed (𝑥 ≤ 𝑥open, 𝑐v = 0) we find from Eq. (16) that the system is in equilibrium only for 𝑄in = 0. In that situation,
the coupling between 𝛥𝑝 and 𝑥 reduces to the mechanical model Eq. (15), and the equilibria follow from Eq. (17)

𝛥𝑝(𝑥eq) = 𝑝S(𝑥eq). (18)

When the valve is open (𝑥 > 𝑥open), we can substitute Eq. (17) in Eq. (16) to find the equilibria (𝑥eq, 𝛥𝑝eq). At equilibrium, the
outflow rate must equal the inflow rate. All equilibria are therefore described by the single equation

𝑄in = 𝑄out = 𝑐v(𝑥eq)
√

𝑝S(𝑥eq). (19)

This observation allows us to project Eqs. (16) and (17) on any of the three two-dimensional projections of the system 𝑥–𝛥𝑝–𝑄out. We
illustrate these projections in Fig. 5, using representative values for the mechanics, but arbitrary parameter values for the fluidics. In
9
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Fig. 6. Effect of valve conduction parameters on system equilibria. (A) Effect of 𝑥open for a constant value of 𝜓 = 1mm−1. (B) Effect of 𝜓 for a constant value
of 𝑥open = 1mm. The left column (i) shows the relation 𝑐v(𝑥eq). The right column (ii) shows the resulting nullcline d𝑥∕d𝑡 = 0 (colored lines). Solid black lines
show the experimentally obtained reference curves for the regulation mode and fully open state.

Fig. 5A we show the solutions to Eqs. (16) and (17) in the 𝑥–𝛥𝑝 plane for 𝑄in = 10, 20, and 30 SLPM. In this projection, the nullcline
d𝑥∕d𝑡 = 0 (black line) is equivalent to the behavior of 𝑝S(𝑥) (Fig. 4B). The nullclines d𝛥𝑝∕d𝑡 = 0 (colored lines) are determined by
rewriting Eq. (19) as follows

𝛥𝑝eq =
(

𝑄in∕𝑐v(𝑥eq)
)2 . (20)

The points where two nullclines cross indicate the points where the fluidic and mechanical pressure/force equilibrate. As such, higher
flow rates lead to higher values of 𝑥. Moreover, for some flow rates (e.g., for 𝑄in = 20 SLPM)) we observe multiple equilibrium points.
In Fig. 5B, we show the same nullclines in the 𝑥–𝑄out plane. The nullclines d𝛥𝑝∕d𝑡 = 0 (colored lines) are conveniently transformed
to straight lines, since 𝑄in = 𝑄out. This makes it straightforward to find the equilibria for any inflow rate 𝑄in from inspecting only
the single nullcline d𝑥∕d𝑡 = 0. The nullcline d𝑥∕d𝑡 = 0 (black line) is described by Eq. (19). In Fig. 5C, we show the mapping of
the unique values 𝑄out(𝑥eq) and 𝛥𝑝(𝑥eq) onto the 𝑄out–𝛥𝑝 plane. This final mapping is most convenient for our purposes, since 𝛥𝑝
and 𝑄out are the variables that we measure in experiments, such that this projection enables a direct comparison with experimental
data.

Comparing the nullclines shown in Fig. 5C to the experimentally observed behavior Fig. 3, we see four similarities.

1. The closed state of the valve is described by a vertical section at 𝑄in = 0.
2. The fully open state of the valve is represented by a section starting at the local pressure minimum around 𝑄in ≈ 18 SLPM,

𝛥𝑝 ≈ 5 kPa, and extending (infinitely) to higher flows and pressures.
3. There is a section connecting the previous two, that spans approximately the same pressure and flow ranges as the

experimentally observed regulation mode. (In the following points we refer to this section as the suspected regulation mode.)
4. The range of inflow rates for which the suspected regulation mode exists, partially overlaps with the range of inflow rates

for which the fully open state exists.

A qualitative difference is that in the model the suspected regulation mode has a negative slope, while in the experimental data the
regulation mode has a positive slope.

4.2. Equilibria as function of conduction parameters

We have determined the general existence of equilibria and identified a part of the nullcline d𝑥∕d𝑡 = 0 that potentially describes
the regulation mode. In the current section we study how the equilibria change when we vary model parameters. The nullclines
of our initial model depend only on the spring model and conductance behavior. The assumptions presented in Section 3.2 fully
constrain the parameters of the spring model based on experimental data. We therefore turn our attention to the conductance
behavior, i.e., the fluidics parameters 𝑥open, 𝜓 , 𝑐i and 𝑠∞.

We seek to optimize the fit between model and experimental values for 𝛥𝑝(𝑄out) in the regulation mode, under the constraint
that 𝛥𝑝(𝑄out) in the fully open state is also matched. We select 𝑥open and 𝜓 as the free parameters. For different combinations of
𝑥open and 𝜓 we perform a two-parameter fit to open state data to obtain 𝑐i and 𝑠∞. In Fig. 6 we show the resulting conductance
behaviors and nullclines alongside the measured data. Increasing 𝑥open (Fig. 6A(i)) leads to a decrease of the pressure at low flow
(Fig. 6A(ii)). The pressure at 𝑄out = 0 is equal to 𝑝S(𝑥open). Experimentally, the regulation mode occurs at pressure differences
around 𝛥𝑝 ≈ 30 kPa. This is best approximated for 𝑥open ≈ 1mm.

Increasing 𝜓 (Fig. 6B(i)) flattens 𝛥𝑝(𝑄out), but the slope remains negative. The experimental behavior has a slightly positive
slope. Therefore, the fit to the measured data continues to improve as 𝜓 → ∞. As a result, we do not find an upper bound on 𝜓
from this analysis. Conversely, decreasing 𝜓 decreases the range of flow rates for which regulation and oscillation could coexist,
i.e., 𝑄+

fold decreases. Below a critical value 𝜓 = 𝜓cusp ≈ 0.22mm−1, the regulation mode and the fully open state cannot coexist
altogether. Since this contradicts the experimental observations, we will use 𝜓 > 𝜓 as a lower bound in our further analysis.
10
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The result of this section is that we have narrowed the feasible range for four model parameters. We get the best fit with
xperimental data for 𝑥open ≈ 1mm and 𝜓 > 𝜓cusp ≈ 0.22mm−1. For different values of 𝜓 , we find 𝑐i and 𝑠∞ by fitting to experimental
ata. We show the resulting values for 𝑐i and 𝑠∞ in Additional Fig. 23.

The nullclines for 𝑥open = 1mm and 𝜓 > 0.22mm−1 show that there exist equilibria at pressure and inflow values similar to
hose we observed experimentally in the regulation mode, albeit with negative slope instead of the positive slope that we observe in
xperiments. This suggests that the model could potentially reproduce the observed behavior, but only if these equilibria are stable
n the regulation mode, and only if there also exists an oscillation mode at the same inflow rates. To determine if this can be the
ase, we need to study the dynamics of the system, i.e., the stability of the equilibria as well as the possible (co-)existence of stable
oints and limit cycles.

.3. Stability of the equilibria

Thus far, we have determined approximate values for all parameters except for 𝜓 and 𝑏. In this section, we study if there is any
ombination of values for 𝜓 and 𝑏 that leads to stability of the regulation mode as well as the existence of the oscillation mode.
his will finalize our analysis of the initial model, and allows us to determine if the model is capable of capturing the qualitative
ehavior observed in experiments.

We begin by assessing the stability of the equilibria. For the valve in the closed state (𝑥 ≤ 𝑥open), the system reduces to Eq. (15),
nd stability can be determined from

𝜕
( d𝑥
d𝑡

)

∕𝜕𝑥 < 0 ⟺ = −
𝐴v
𝑏
𝜕𝑝S
𝜕𝑥

< 0 ⟺
𝜕𝑝S
𝜕𝑥

> 0, 𝑥 ≤ 𝑥open. (21)

For 𝑥 > 𝑥open, we write the Jacobian matrix of the system

𝐽 =
⎡

⎢

⎢

⎣

𝜕
(

d𝛥𝑝
d𝑡

)

∕𝜕𝛥𝑝 𝜕
(

d𝛥𝑝
d𝑡

)

∕𝜕𝑥

𝜕
(

d𝑥
d𝑡

)

∕𝜕𝛥𝑝 𝜕
(

d𝑥
d𝑡

)

∕𝜕𝑥

⎤

⎥

⎥

⎦

|

|

|

|

|

|

|𝑥eq

=
⎡

⎢

⎢

⎣

− 𝑐v(𝑥)
2𝐶0

1
√

𝑝S(𝑥)
−

√

𝑝S(𝑥)
𝐶0

𝜕𝑐v
𝜕𝑥

𝐴v
𝑏 −𝐴v

𝑏
𝜕𝑝S
𝜕𝑥

⎤

⎥

⎥

⎦

|

|

|

|

|

|

|𝑥eq

, (22)

here
𝜕𝑐v
𝜕𝑥

= 𝜓 𝑐i 𝑒
𝜓 (𝑥open−𝑥) + 𝑠∞, (23)

and

𝜕𝑝S
𝜕𝑥

= 1
𝐴v

⎛

⎜

⎜

⎜

⎝

𝑘r

𝑏0
2
(

𝑥2

𝑏02
+ 1

)2
−
𝑘s

(
√

𝑏0
2 + ℎ0

2 −
√

𝑏0
2 + 𝑥2

)

√

𝑏0
2 + 𝑥2

+
𝑘s 𝑥2

𝑏0
2 + 𝑥2

+

𝑘s 𝑥2
(
√

𝑏0
2 + ℎ0

2 −
√

𝑏0
2 + 𝑥2

)

(

𝑏0
2 + 𝑥2

)3∕2
−

2 𝑘r 𝑥
(

atan
(

ℎ0
𝑏0

)

+ atan
(

𝑥
𝑏0

))

𝑏0
3
(

𝑥2

𝑏02
+ 1

)2

⎞

⎟

⎟

⎟

⎠

. (24)

Note that the inflow rate does not appear in the Jacobian. That is because for any equilibrium position the associated inflow rate
𝑄in(𝑥eq) can be inferred, according to Eq. (19).

If both eigenvalues 𝜆1 and 𝜆2 of the Jacobian, evaluated at an equilibrium position 𝑥eq, are negative, the equilibrium is stable.
For a two-DOF system, this can be determined following

𝜆i < 0 (𝑖 = 1, 2) ⟺ det(𝐽 ) = 𝜆1 𝜆2 > 0 ∧ tr(𝐽 ) = 𝜆1 + 𝜆2 < 0. (25)

Considering the first condition needed for stability, we write the determinant of the Jacobian

det(𝐽 ) =
𝐴v

(

𝑐v(𝑥)
𝜕𝑝s
𝜕𝑥 + 2 𝑝S(𝑥)

𝜕𝑐v
𝜕𝑥

)

2 𝑏𝐶0
√

𝑝S(𝑥)

|

|

|

|

|

|

|𝑥eq

> 0. (26)

Since the isolated spring model, without fluidic effects, is monostable,

𝑝S(𝑥) > 0 ∀ 𝑥 > −ℎ0, (27)

Eq. (26) holds if

𝑐v(𝑥)
𝜕𝑝S
𝜕𝑥

+ 2 𝑝S(𝑥)
𝜕𝑐v
𝜕𝑥

> 0. (28)

As 𝑝S, 𝑐v(𝑥), and its derivative 𝜕𝑐v∕𝜕𝑥 are greater than zero for 𝑥 > 𝑥open, the determinant is positive for positions where the
pressure–displacement curve has positive slope, i.e., where the spring model has positive differential stiffness

𝜕𝑝S > 0 ⇒ det(𝐽 ) > 0. (29)
11
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Table 1
Parameters used for the stability analysis of the initial model.
Parameter Value Unit

𝑏0 12 mm
ℎ0 9.2 mm
𝜃 75 deg
𝐴𝑣 452.4 mm2

𝑘S 2.9 × 107 Nmm−1

𝑘R 3.6 × 108 Nmm rad−1

𝐶0 0.06 1∕60SL∕kPa
𝑥open 1 mm
𝜓 10 mm−1

𝑐i 4.5 SLPM∕
√

kPa
𝑠∞ 0.7 SLPM∕

√

kPa∕mm

In the negative differential stiffness region, the Jacobian only has a positive determinant if

𝜓 𝑒𝜓
(

𝑥open−𝑥
)

+ 𝑠∞∕𝑐i
1 − 𝑒𝜓(𝑥open−𝑥) + 𝑠∞∕𝑐i (𝑥 − 𝑥open)

> − 1
2 𝑝S(𝑥)

𝜕𝑝S
𝜕𝑥

, 𝑥 > 𝑥open, (30)

here we use Eq. (23) to highlight the dependence on 𝜓 .
Note that Eq. (28) implies positive slope 𝜕𝑄out∕𝜕𝑥, since

𝑄out,eq = 𝑐v(𝑥)
√

𝑝S,
𝜕𝑄out
𝜕𝑥

=
𝜕𝑐v
𝜕𝑥

√

𝑝S + 𝑐v(𝑥)
1

2
√

𝑝S

𝜕𝑝S
𝜕𝑥

,

𝜕𝑄out
𝜕𝑥

> 0 ⟺ 𝑐v(𝑥)
𝜕𝑝S
𝜕𝑥

+ 2 𝑝S(𝑥)
𝜕𝑐v
𝜕𝑥

> 0 ⇒ det(𝐽 ) > 0, (31)

which further implies negative slope 𝜕𝑝S∕𝜕𝑄out in the negative differential stiffness region of the mechanics ( 𝜕𝑝S
𝜕𝑥 < 0), since

𝜕𝑄out
𝜕𝑥

=
𝜕𝑝S
𝜕𝑥

∕
𝜕𝑝S
𝜕𝑄out

,

𝜕𝑄out
𝜕𝑥

> 0 ⟺ sign
(

𝜕𝑝S
𝜕𝑥

)

= sign
(

𝜕𝑝S
𝜕𝑄out

)

. (32)

his means that those equilibria for which 𝜕𝑝S∕𝜕𝑄out > 0 and 𝜕𝑝S∕𝜕𝑥 < 0 are unstable (saddle points, det(𝐽 ) < 0) for any value of
amping parameter 𝑏.

For the second condition for stability, we require that the trace of the Jacobian is negative

tr(𝐽 ) = −
𝑐v(𝑥)
2𝐶0

1
√

𝑝S(𝑥)
−
𝐴v
𝑏

𝜕𝑝S
𝜕𝑥

|

|

|

|𝑥eq
< 0. (33)

The first term of Eq. (33) is always less than or equal to zero. Therefore, the trace is always negative when the spring model has
positive differential stiffness

𝜕𝑝S
𝜕𝑥

> 0 ⇒ tr(𝐽 ) < 0 (34)

or the region of the spring model behavior that has negative differential stiffness, the trace of the Jacobian is only negative for a
inimum value of damping, as we see from rearranging Eq. (33)

𝑏 > −
(

2𝐴V 𝐶0
𝑐v(𝑥)

)

𝜕𝑝S
𝜕𝑥

√

𝑝S(𝑥), 𝑥 > 𝑥open. (35)

From Eqs. (21), (25), (29) and (34) we find that equilibrium positions where the spring model has positive differential stiffness
are always stable. For the region with negative slope, Eqs. (30) and (35) allow us to determine parameter values 𝜓 and 𝑏 for which
he regulation mode is stabilized. We can see that these values will be different for varying equilibrium positions 𝑥eq. Since we also
now the unique equilibrium inflow rate associated with any equilibrium position 𝑄in(𝑥eq) according to Eq. (19), we can determine
range of inflow rates for which the regulation mode is stable, as function of 𝜓 and 𝑏.

In Fig. 7 we show the flow rates for which the regulation mode is stable, for 𝜓 = 𝜓cusp, 1, 10, and 100mm−1, and damping
alue 1 ≤ 𝑏 ≤ 1 × 106 N smm−1. The minimum flow rate (orange curve) follows from Eq. (35) (tr(𝐽 ) < 0). The maximum flow rate
blue lines and blue projected curve) follows from Eq. (30) (det(𝐽 ) > 0). As an example, we highlight the stable region in the plane
efined by 𝜓 = 10mm−1 (green area in Fig. 7). To illustrate the effect of 𝑏, we study the system response in more detail for four

points marked 𝑏1, 𝑏2, 𝑏3, 𝑏4 on the line defined by 𝜓 = 10mm−1 and 𝑄in = 15 SLPM. For these values of 𝜓 and 𝑄in, the minimum
damping to achieve stability is 𝑏 = 1230N smm−1. The first two points (𝑏1 = 1 and 𝑏2 = 100N smm−1) are in the unstable regime.
The other two points (𝑏 = 1 × 104 and 𝑏 = 1 × 106 N smm−1), are in the stable regime.
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Fig. 7. Stability of the suspected regulation mode. Areas between blue lines and orange curves are stable. As an example, the stable region for 𝜓 = 10mm−1 is
colored green. The dynamic response of markers 𝑏1, 𝑏2, 𝑏3, and 𝑏4 is exemplified in Fig. 8. The used parameter values are listed in Table 1.

Fig. 8. Simulated effect of damping parameter 𝑏 on the dynamic response of the initial model. (A) and (B) Simulated trajectories (blue and magenta curves)
for two different initial conditions (blue and magenta stars), both for 𝑄in = 15 SLPM, are shown in the 𝑄out–𝛥𝑝 plane (A), and in the 𝑥–𝛥𝑝 plane (B). Black
curves represent The nullcline d𝑥∕d𝑡 = 0, where green overlay corresponds to stable equilibria. (C) Simulated pressure difference 𝛥𝑝 over the valve for the same
trajectories shown in (A) and (B). Columns (i) to (iv) show results for increasing values of 𝑏, as indicated. Parameter values are listed in Table 1.

In Fig. 8 we show the system response for different values of damping parameter 𝑏 (corresponding to markers 𝑏1 to 𝑏4 in Fig. 7).
13
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Fig. 9. Simulated effect of damping on stability of oscillation and suspected regulation modes in the initial model, for 𝑄in = 15 SLPM. (A) Stable limit cycles
(gray curves) in the 𝑄out–𝛥𝑝 plane for different values of damping 𝑏. The single equilibrium changes from unstable (red) to stable (green). (B) Real and imaginary
parts of the eigenvalues of the Jacobian and trace and determinant of the Jacobian. Flow symbols indicate (from left to right) unstable node, unstable spiral,
stable spiral, stable node. Open circular marker indicates transition to stability. Parameter values are listed in Table 1.

lower values of 𝜓 and other values of inflow rate 0 < 𝑄in < 𝑄−
fold (see Fig. 6 for the definition of 𝑄−

fold). In Fig. 8A and B we show the
nullclines in the 𝑄out–𝛥𝑝 plane and 𝑥–𝑝 plane, respectively. We evaluate the stability and color the stable parts of the nullcline green.
Note that green coloring means these points are stable if and only if the associated inflow rate 𝑄in,eq = 𝑄out,eq is applied. We also
show two trajectories, one starting close to the expected limit cycle for oscillation (blue star and curve), and another starting close
to the regulation mode (magenta star and curve), both for 𝑄in = 15 SLPM. Additionally, we show these trajectories as a function of
time in Fig. 8C.

As expected from Fig. 7, at low damping (Fig. 8A-C (i) and (ii)) there are no flow rates for which the regulation mode is stable.
Only the fully open and closed states are colored green. For higher values of 𝑏, the suspected regulation mode is stable for a wide
range of inflow rates (iii) and (iv). Note that the applied flow rate 𝑄in = 15 SLPM lies within this range and the equilibrium is
therefore stable.

These results show that the suspected regulation mode can be stabilized by sufficiently high damping. However, increased
damping also strongly affects the oscillation mode. At low damping (Fig. 8A-C (i)) we see relaxation oscillations with maximum
pressure close to 𝛥𝑝open, i.e., close to the value at which the valve opens in a quasi-static experiment (Fig. 3). This agrees with
the observed behavior in experiments (Figs. 2 and 3). Higher damping slows down the transitions between open and closed states,
which increases 𝛥𝑝max and decreases the cycle frequency (Fig. 8A-C (ii)). More importantly, at the same step in damping value for
which the suspected regulation mode appears, the oscillation mode disappears altogether (Fig. 8A-C (iii) and (iv)). Therefore, in
this analysis, we do not find any combination of parameters in line with experimental observations, for which the current model
explains the coexistence of the regulation and oscillation modes.

Note that the step in damping value from 𝑏2 to 𝑏3 is still two orders of magnitude. To better understand this transition and
to ensure that coexistence does not exist at intermediate values, we perform a numerical bifurcation analysis. We determine the
eigenvalues of the Jacobian for the equilibrium at 𝑄 = 15 SLPM as a function of 𝑏, and we find the limit cycle of the system
14

in



Journal of Fluids and Structures 126 (2024) 104090L.C. van Laake and A. Comoretto et al.
Fig. 10. Displacement-controlled loading experiment of the valve. (A) Schematic of the experimental setup. A custom probe is attached to a universal testing
system (Instron), see Additional Fig. 21 for a detailed overview of the setup. (B) Measured force during loading (red curve) and unloading (green curve). Circular
markers indicate local maxima, triangles mark an identical displacement value during loading (red, pointing right) and unloading (green, pointing left) for which
we show the deformed valve in panels (C) and (D), respectively.

by forward integration of Eqs. (14) and (15) (Fig. 9). From this analysis, we see that the equilibrium transitions in a continuous
manner from an unstable node to an unstable spiral, then in a supercritical Hopf bifurcation to a stable spiral, and finally to a
stable node (Fig. 9B) (Khalil, 2002). The limit cycle disappears at the Hopf bifurcation, where the stable node appears (Fig. 9A).
This conclusively shows that the initial system description can only explain the oscillation mode and not the regulation mode, as
stability of the suspected regulation mode depends heavily on damping which is unphysical in comparison to our experiments.

5. Modified valve model

The initial model of the valve is based on the most basic spring-model that shows a snap-through instability (due to the
compression spring), without being bistable at zero load, and an intuitive model for the conduction of air through the valve opening.
In Section 4.3 we show that this model cannot explain the regulation mode. In the current section we aim to improve the model
so that it will capture the observed behavior. Thereto, we revisit the experimental results and perform an additional experiment
to understand what we are still missing in our model. We then update the model to reflect these insights and perform a similar
analysis as we did for the initial model.

5.1. Definition of the modified model

When comparing the initial model with experiments, one important difference is the slope of the regulation mode in the 𝑄out–𝛥𝑝
plane (Fig. 6). Experimentally, we observe that the regulation mode has a positive slope, i.e., d𝛥𝑝∕d𝑄out > 0, and this cannot be
reproduced by the initial model. That is because the regulation mode is located at a displacement value that is characterized by
negative differential stiffness d𝛥𝑝∕d𝑥 < 0, which requires d𝛥𝑝∕d𝑄out < 0 for stability according to Eq. (32). We hypothesize that the
experimentally observed positive slope of the regulation mode in the 𝑄out–𝛥𝑝 plane is essential and should be featured in a modified
model. That implies that the regulation mode must be associated with positive differential stiffness, i.e., d𝛥𝑝∕d𝑥 > 0.

To qualitatively test if there exists another state (besides the fully open state) that has positive differential stiffness and where
the valve is open, we conduct an experiment where we deform a valve with a probe (Fig. 10A). We control the position of the
probe while monitoring the reaction force and the deformation of the valve. Despite the difference in loading conditions compared
to loading with pressurized air, this experiment still provides important clues about the general mechanical behavior of the valve.

Specifically, that there are two distinct paths, during loading and unloading (Fig. 10B), and the difference seems too large to
be explained from material dissipation alone. This is supported by the observed deformation (Figs. 10C and D). The shape of the
valve during loading is symmetric (Fig. 10C), while the shape during unloading is asymmetric (Fig. 10D) and similar to the shape
observed in the regulation mode (Fig. 1E(i) and Fig. 2D(i) – (iii)).

We recognize that these results may be influenced by the indenter. Especially along the loading path beyond the pressure
maximum, the indenter seems to stabilize a symmetric deformed shape that may not be seen when the valve is loaded with air
15
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Fig. 11. A modified model to account for additional hysteresis in the mechanics and conduction behavior. (A) Idealization of the actual, observed behavior (see
Fig. 10), with hysteresis in mechanics and valve conduction. (i) Equilibrium pressure difference over the valve as function of displacement of the dome. The
loading curve (red) is stiffer than the unloading curve (green). At 𝑥open = 𝑥+snap, stiff the pressure-displacement curve switches between the stiff and soft curves.
(ii) Valve conduction as function of displacement of the dome. During loading (red curve), the valve opens around the pressure maximum of the corresponding
pressure-displacement curve (red circular marker in A(i)), but during unloading (green curve) the valve closes at a smaller displacement than the local maximum
of the corresponding pressure-displacement curve (green circular marker in A(i)). (B) Modified model implementation. (i) The soft curve is shifted to the right.
(ii) The unloading conduction curve is shifted on top of the loading curve.

pressure. We are led to this belief by experiments where we vary the maximum indentation distance, as shown in Additional
Fig. 22. That experiment shows that when the valve is probed to sufficient displacement, representative of the case where the
valve transitions from the fully open state to its initial shape, it follows the (green) unloading path shown in Fig. 10B.

Even if the loading path measured with a probe may not be fully representative of the hydrostatic load case, these observations
indicate there is hysteresis under displacement control that we do not take into account in our initial model. To represent this
finding, we define an idealized description of the observed behavior with a stiffer loading curve and a softer unloading curve, as
shown schematically in Fig. 11A(i) and we define 𝑥+snap, stiff of the stiffer curve as the point where the valve switches between the
two curves during loading. During unloading, the softer path is followed. Since the valve follows different paths during loading and
unloading, the valve orifice does not need to close upon unloading at the same displacement value where it opens upon loading.
Crucially, such hysteresis in the valve conduction may result in the existence of the required displacement range where the valve
is open, and differential stiffness is positive (gray highlight in Fig. 11A(i)). As an idealized description of this conduction behavior,
we assume two identical conduction curves, modulo a certain (as of yet unknown) translation 𝑥shift, as shown schematically in
Fig. 11A(ii).

However, explicitly implementing even this highly simplified additional hysteresis behavior complicates the model, because both
𝑐v and 𝑝S are no longer functions of 𝑥. We prefer to maintain a uniquely defined model in 𝑥, and to keep the number of DOFs in
our model to a minimum, while still introducing this potentially crucial additional behavior. To obtain this result, we firstly ensure
that the conduction behavior is uniquely defined. Thereto, we translate the conduction curve associated with unloading by −𝑥shift,
such that it overlaps with the conduction curve associated with loading (Fig. 11B(ii)). Secondly, to maintain the assumed relation
between pressure and valve conduction, we translate the softer mechanical curve by the same amount (Fig. 11B(i)). Note that the
16
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Fig. 12. Nullcline d𝑥∕d𝑡 = 0 of the modified model. The red line corresponds to the stiffer behavior for 𝑥 ≤ 𝑥open, where the valve is closed. The green curve
corresponds to the softer behavior at 𝑥 > 𝑥open, where the valve is open. The nullcline fits measured values 𝛥𝑝(𝑄out) (black curves) both in the regulation mode
and in the fully open state. Parameter values are listed in Table 2.

Table 2
Parameters used for the stability analysis of the modified model.
Parameter Value Unit

𝑏0 12 mm
ℎ0 9.2 mm
𝜃 75 deg
𝐴𝑣 452.4 mm2

𝑘S 3.0 × 107 Nmm−1

𝑘R 3.7 × 108 Nmm rad−1

𝑘S,soft 1.6 × 107 Nmm−1

𝑘R,soft 2.2 × 108 Nmm rad−1

𝐶0 0.06 1∕60SL∕kPa
𝑥open −3.9 mm
𝑥shift 3.7 mm
𝜓 1.1 mm−1

𝑐i 3.9 SLPM∕
√

kPa
𝑠∞ 0.3 SLPM∕

√

kPa∕mm

value of 𝑥shift will later be determined from a fit to experimental data. This procedure artificially makes the relevant part of the
unloading curve accessible, without introducing additional hysteresis.

The modified model is described by the same differential equations (Eqs. (14) and (15)) and conduction model (Eq. (13)) as the
initial model. The spring model is piece-wise identical to the initial definition of Eq. (8), i.e.,

𝐹S, mod =

{

𝐹S(𝑥), 𝑘S = 𝑘S,stiff, 𝑘R = 𝑘R,stiff 𝑥 ≤ 𝑥open

𝐹S(𝑥 − 𝑥shift), 𝑘S = 𝑘S,soft, 𝑘R = 𝑘R,soft 𝑥 > 𝑥open,
(36)

where we leave the stiffer curve unchanged with respect to the initial model. We introduce three new variables 𝑘S,soft, 𝑘R,soft and
𝑥shift that describe the softer curve. We link their values to experimental observations as follows. First, we take the values of 𝑘S,soft
and 𝑘R,soft such that the local pressure minimum is equal to the value 𝛥𝑝close found in a static experiment (𝛥𝑝close ≈ 5 kPa, see
Fig. 3), so 𝑝−snap,soft = 𝑝−snap, stiff = 𝛥𝑝close. Then, for different values of 𝑝+snap,soft we determine the values of 𝑥shift and valve conduction
parameters 𝜓 , 𝑠∞ and 𝑐i that minimize the least-squares error between model and experimental data. We visually observe that a
good fit is obtained for 𝑝+snap,soft = 40 kPa.

The resulting nullcline d𝑥∕d𝑡 = 0 is shown in Fig. 12, alongside measured data. The modified model allows a good fit to data
both in the fully open state and in the regulation mode. Importantly, the modified model results in the existence of a displacement
range with positive slope 𝜕𝛥𝑝∕𝜕𝑄out > 0. Note that we develop our model based on measurements of the regulation mode for inflow
rates 𝑄in ≤ 25 SLPM, which is a limitation of our mass flow control equipment. At 𝑄in = 25 SLPM, the valve is still in the regulation
mode, but the model predicts that the valve must transition from the regulation mode to the fully open state if we increase the
flow rate even further (Fig. 12). For completeness, we qualitatively verify this prediction, by connecting the valve directly to a
pressure regulator, while we measure pressure before and behind the valve and flow through the valve (Additional Fig. 20). That
is the same setup we use to measure the fully open state at higher flow rates (green curve in Fig. 3). Interestingly, we observe
not only the transition to the open state, but even the pressure decrease before the transition, although we continue to manually
increase the pressure setpoint. The pressure drop is able to decrease while we increase the setpoint, because there is restriction
17
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Fig. 13. Simulated effect of damping parameter 𝑏 on the dynamic response of the modified model. (A) and (B) Simulated trajectories (blue and magenta curves)
for two different initial conditions (blue and magenta stars) and 𝑄in = 15 SLPM, shown in the 𝑄out–𝛥𝑝 plane (A), and in the 𝑥–𝛥𝑝 plane (B). Black curves represent
the nullcline d𝑥∕d𝑡 = 0, where green overlay corresponds to stable equilibria. (C) Simulated pressure difference 𝛥𝑝 over the valve for the same trajectories shown
in (A) and (B). Columns (i) to (iv) show results for increasing values of 𝑏, as indicated. Parameter values are listed in Table 2.

(tubes, connectors) between the pressure regulator and the valve, such that this setup approximates flow control rather than pure
pressure control. The extended experiment qualitatively verifies the final part of the nullcline that was not observed at lower flow
rates in the experiments using a dedicated flow controller (black curve in Fig. 3).

5.2. Coexistence of regulation and oscillation in the modified model

To determine if the modified model can explain coexistence of the regulation mode and the oscillation mode, we numerically
analyze the effect of damping parameter 𝑏, as we did for the initial model. In Fig. 13 we show the system response for four values
of damping, and for a constant inflow rate 𝑄in = 15 SLPM.

Crucially, and differently from the initial model, at any of the studied values of damping there exists a stable equilibrium for a
wide range of inflow rates, specifically for any inflow rate where 𝜕𝑝S∕𝜕𝑥 > 0. For increasing damping values, the stable range of
inflow rates grows to include also the part where 𝜕𝑄out∕𝜕𝑝S < 0 ∧ 𝜕𝑝S∕𝜕𝑥 < 0. Similarly to the initial model, we observe a limit
cycle that corresponds to the oscillation mode. Increasing damping affects the oscillation mode. Higher damping slows down the
transitions between open and closed states, which increases 𝛥𝑝open, and decreases the cycle frequency (i) and (ii). As in the initial
model, the oscillation mode disappears altogether at high damping (iii) and (iv). Excitingly, the modified model thus reproduces
the coexistence of the oscillation and regulation mode (for moderate values of the damping parameter).

In the modified model, the oscillation mode is surrounding a stable equilibrium. Therefore, for the stable limit cycle to exist,
there must also exist an unstable limit cycle between the stable regulation mode and the stable oscillator. To probe the existence
of such unstable limit cycle, we integrate differential equations Eqs. (14) and (15) both forward and backward in time, where we
use the modified model Eq. (36) for the mechanics. We start from initial conditions near the expected limit cycle, near the stable
equilibrium, and in between.

In Fig. 14A we show stable (gray) and unstable (red) limit cycles for different values of 𝑏. At lower damping values, we find
a single unstable limit cycle between the stable oscillating and regulation modes, as required for the coexistence of both modes.
Interestingly, both limit cycles deform for increasing damping, until at 𝑏 ≈ 220N smm−1 they disappear in a fold of limit cycles.
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Fig. 14. Simulated effect of damping on stability of oscillation and regulation modes in the modified model, for 𝑄in = 15 SLPM. (A) Stable (gray curves) and
unstable (red curves) limit cycles in the 𝑄out–𝛥𝑝 plane for different values of damping 𝑏. For all values of 𝑏, the single equilibrium is stable (green marker). (B)
Real and imaginary parts of the eigenvalues of the Jacobian and trace and determinant of the Jacobian. Flow symbols indicate (from left to right) stable node,
stable spiral, stable node. Parameter values are listed in Table 2.

This is in contrast to the situation in the initial model, where the oscillation mode disappeared in a Hopf bifurcation, giving rise to
the regulation mode. In the modified model, the regulation mode transforms from a stable node to a focus and back for increasing
damping values, but never becomes unstable (Fig. 14B).

Having determined the coexistence of regulation and oscillation, as well as the effect of damping, we can now try to replicate
key results observed in experiments. Firstly, recall that the system can enter the regulation mode as a result of a disturbance (Fig. 1).
In the experiment we temporarily pinch a tube behind the valve. In our numerical replication of the experiment, we approximate
this disturbance by temporarily increasing damping parameter 𝑏 (Fig. 15A). This causes the system to transition from the oscillation
mode to the regulation mode. That is because increased damping temporarily removes the oscillation mode, conform Figs. 13 and
14. The system is therefore attracted to the regulation mode. Once in the regulation mode, the system stays in that mode even when
the damping value is restored to its original value, because it is now inside the unstable limit cycle that separates the two modes.

Secondly, recall that upon varying the inflow rate over a wide range in an experiment, the system remains in the mode in
which it started (Fig. 2). Numerically, we similarly apply a varying inflow rate (Fig. 15B(i)) and first start the system from an
initial condition corresponding to the regulation mode (green star in Fig. 15B(ii)). As in the experiment, the system remains in the
regulation mode as the flow rate is increased and decreased. Differently from the experiment, the simulated system does not exit
the regulation mode until the flow completely stops. Then, we start from an initial condition corresponding to the oscillation mode
(red star in Fig. 15B(iii)). The simulated system continues to oscillate when the inflow rate is changed. The oscillation frequency
first increases, then decreases until the system stops oscillating as it enters the fully open state. Upon decreasing the inflow rate the
system restarts oscillating at the same inflow rate where it stopped.
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Fig. 15. Numerical replication of experimental results. (A) A temporary disturbance permanently moves the system from the oscillation to the regulation mode
(compare to the experiment in Fig. 1). Simulated pressure difference 𝛥𝑝 for a constant inflow rate 𝑄in = 4SLPM. 𝑏 = 20N smm−1 for the first twenty seconds,
𝑏 = 1 × 104 N smm−1 between 𝑡 = 20 s and 𝑡 = 30 s, then 𝑏 = 20N smm−1 again. (B) The system remains in regulation or oscillation mode for a wide range of
inflow rates (compare to the experiment shown in Fig. 2). (i) Inflow rate 𝑄in = 4SLPM in the first five seconds, then increases to 𝑄in = 25 SLPM at 𝑡 = 30 s, and
decreases to 𝑄in = 0 at 𝑡 = 55 s. (ii) and (iii) Simulated pressure difference 𝛥𝑝 for 𝑏 = 20N smm−1, when starting from initial conditions close to the regulation
mode (ii) or oscillation mode (iii). Parameter values are listed in Table 2.

6. Suppressing the regulation mode

The modified model provides a mechanistic explanation for the existence of the regulation mode. In the remainder of this work,
we will test the predictive power of the model by using it as a design tool to avoid the existence of the regulation mode. This goal
is motivated by the application of hysteretic valves in soft robot control, where the existence of the regulation mode could in some
cases be a risk. As we have seen, the system can enter this mode by temporary disturbances, that may not always be avoidable.

Of several available routes to avoid regulation, here we focus on changing only the valve conduction behavior, without
significantly changing the mechanics. The regulation mode exists at low flow rates because it maintains a large enough pressure
drop to prevent the valve from snapping back to its initial state (Figs. 1B and 2B). This is possible because the valve orifice is almost
completely closed (Fig. 1E(i) and 2D(i)–(iii)). This prompts us to study what happens when the valve never completely closes, except
in its initial state.

In Fig. 16 we show an implementation of this concept in our model. We study the effect on the nullclines when we assume that
a finite orifice opening remains for all 𝑥 > 𝑥open. In the initial state, the valve is still completely closed, i.e., 𝑐v = 0 for 𝑥 ≤ 𝑥open.
We implement the inhibition of premature closing by adding a factor 𝜌 to our definition of the valve conduction

𝑐v =

⎧

⎪

⎨

⎪

⎩

0 𝑥 ≤ 𝑥open

𝜌 𝑐i + (1 − 𝜌) 𝑐i
(

1 − 𝑒𝜓
(

𝑥open−𝑥
)
)

+ 𝑠∞ (𝑥 − 𝑥open) 𝑥 > 𝑥open.
(37)

In Fig. 16A we show the resulting conduction behavior, and in Fig. 16B we show the effect on the nullcline d𝑥∕d𝑡 = 0. Varying
parameter 𝜌 between 0 and 1, i.e., increasing the minimum conduction value from 0 to 1 times 𝑐i, results in the disappearance of
equilibria in the range 0 < 𝑄in < 𝑄−

reg, where

𝑄− = 𝑐 (𝑥 )
√

𝑝 (𝑥 ) = 𝜌 𝑐
√

𝑝 (𝑥 ), (38)
20

reg v open S open i S open



Journal of Fluids and Structures 126 (2024) 104090L.C. van Laake and A. Comoretto et al.
Fig. 16. Avoiding regulation by avoiding complete closure of the valve. (A) The effect of design parameter 𝜌 on valve conduction. For increasing values of 𝜌,
valve closure in the open state is increasingly inhibited. 𝜌 = 0 represents the original valve design where the valve closes completely before snapping back to the
fully closed state, 𝜌 = 1 nullifies the effect of 𝜓 and maximizes the discontinuous jump at 𝑥open. Green circular markers indicate conduction value 𝑐v(𝑥open) = 𝜌 𝑐i
at valve opening and closing. Green lines indicate a jump. (B) Effect of 𝜌 on nullcline d𝑥∕𝐷𝑡 = 0. Green circular markers correspond to outflow rate 𝑄−

reg at
valve opening and closing. Red triangles correspond to the local flow rate minimum 𝑄−

snap (associated with the local pressure minimum 𝛥𝑝−snap). (C) Evolution of
𝑄−

reg and 𝑄−
snap as function of 𝜌.

such that 𝑄−
reg increases linearly with 𝜌 (Fig. 16C). Setting 𝜌 = 1 all but completely suppresses the coexistence of the oscillating and

regulation modes. From an application perspective, 𝑄−
reg is a safe maximum operating inflow rate, below which the regulation mode

cannot exist.
To experimentally validate this predicted behavior, we fabricate a valve that has additional features aimed at preventing the

valve from closing completely when it is in the regulation mode. Thereto, the valve has protrusions on the convex side of the dome,
around the cut. Moreover, instead of three shorter slits, we cut a single longer slit, as shown in Figs. 17A(i) and (ii). The detailed
design is shown in Additional Fig. 18. We conduct an experiment where we first increase the flow rate from 𝑄in = 0 to 𝑄in = 20 SLPM
in 70 s. We observe that the valve enters the fully open state at 𝑄in = 10 SLPM (light gray star in Fig. 17A(iii)). While we hold the
flow rate at 𝑄in = 20 SLPM, we physically push the valve, causing it to enter the regulation mode (gray star). Excitingly, when
we then decrease the flow rate, the modified valve exits the regulation mode and restarts oscillations around the same inflow rate
(black star) where it entered the open state. This means that there is no longer coexistence between the regulation mode and the
oscillation mode at any flow rate, demonstrating the validity of the model-based prediction.

As a reference, in Fig. 17B we show results of the same experiment using the original valve design. The valve enters the fully
open state at 𝑄in = 18 SLPM, which is higher than the modified valve. Again, we physically push the valve, causing it to enter the
regulation mode (gray star). When we decrease the flow rate, the valve remains in the regulation mode until 𝑄in = 2SLPM (black
star), as expected from the other experimental evidence (e.g., Fig. 2).

These results demonstrate that we can prevent the valve from closing completely in the regulation mode, which in turn removes
the existence of the regulation mode at lower flow rates, as predicted by the model. This high-level result is summarized in Fig. 17D,
where we show the inflow rates for which the oscillation mode, the regulation mode, and the fully open state exist for the two
valve designs. Note that, besides the desired effect, modifying the design also causes the valve to enter the fully open state at a
significantly lower flow rate compared to the original design. The model did not predict this decrease of the maximum flow rate for
the oscillation mode as a result of changing 𝜌. In reality, the modifications to the design do not only change the fluidics, but also
affect the mechanics to some extent, resulting in a decrease of 𝑝−snap. We measure a pressure drop at closing of the valve 𝛥𝑝close ≈ 0,
indicating that the modified valve is nearly bistable. In future work, this could potentially be mitigated by also changing mechanical
parameters (thickness, dome angle).

7. Discussion

The goal of the present study is to understand the coexistence of a pressure regulation mode and an oscillation mode in soft
hysteretic valves, and more generally to better describe the mechanics and dynamics of the valve in a fluidic circuit. In previous
21
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Fig. 17. Experimental realization of suppression of the regulation mode. (A) The modified valve. (i) Sketch of top view (green line: laser-cut slit), and (ii)
oblique view photograph. The inset shows a side view of the protrusions and the slit (scale bar 5 mm). (iii) Measured pressure drop 𝛥𝑝 over the valve, and
(iv) measured inflow rate 𝑄in. There are no inflow rates for which the regulation and oscillation mode coexist. Star symbols refer to panel C. (B) The original
valve. (i) Sketch of top view (red line: laser-cut slit), and (ii) oblique view photograph (scale bar 5 mm). (iii) Measured pressure drop 𝛥𝑝 over the valve, and
(iv) measured inflow rate 𝑄in. Red shaded area indicates the flow rates for which the regulation and oscillation mode coexist. Star symbols refer to panel C.
(C) Observed states of the modified and original valve. (D) Flow rates for which the (i) modified and (ii) original valve can be in each of three states, the
oscillation mode, regulation mode or fully open state. (i) Green bars indicate for each mode at which range of flow rates the modified valve can be in that
mode, showing no overlap between oscillation and regulation. (ii) Red bars indicate for each mode at which range of flow rates the original valve can be in
that mode, showing significant overlap between oscillation and regulation.

work, we model the same valves as pressure-controlled switches that can be either in a fully open, or a fully closed state (Van Laake
et al., 2022). Using that approach we can, by definition, only describe the behavior of the valve in the oscillation mode and the
fully closed and open states. Therefore, in the present work, we aim to develop a more complete, but minimal model that captures
also the regulation mode.

We conclude from our analysis that an essential feature to explain the coexistence of the regulation and oscillation modes at the
same inflow rate and realistic damping values is the existence of a displacement range with positive differential stiffness. Moreover,
the regulation mode relies on near-complete closure of the orifice, which we can prevent by changing the valve design. Taken
together, our analysis provides a mechanistic explanation of the observed behavior, and can be used for informed design change
decisions.
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Fig. 18. Valve and holder designs. (A) Assembled valve holder. (B) Valve holder design. (C) Original valve design (uniformly scaled up by a factor two with
respect to the design used in our previous work (Van Laake et al., 2022)). (D) Modified valve design.

This work is limited to a specific valve design, of which we change the fluidic characteristics in order to remove the regulation
mode at low flow. However, we conclude that specifics of the mechanics are also essential for the existence of the regulation mode.
Therefore, in future work, it will be interesting to study the effect of the undeformed shape of the valve, such as the thickness and
shallowness of the dome, as well as its boundary conditions.

Furthermore, in this work, we neglect visco-elastic effects, although visco-elasticity may cause some detailed effects that we
currently do not capture in our model. For example, our model predicts a continuous increase of 𝛥𝑝open for increasing 𝑄in (Fig. 15).
In experiments, we see that 𝛥𝑝open initially increases, then decreases (Fig. 2). We hypothesize that this is caused by a memory effect.
At higher flow rates, the valve remains longer in the open state before snapping back (𝑇open increases), such that it increasingly
relaxes in that deformation state. At the same time, the valve spends less time in its initial state (𝑇close decreases). The net outcome
could be an increased effect of residual stress on the forward snap-through event, which results in a lower effective 𝛥𝑝 . A better
23
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Fig. 19. Pressure drop over the valve, compared to pressure drop over constant orifices. In (A) and (B) 𝑎 and 𝑏 are fitting parameters, for the fitting function
𝛥𝑝 = 𝑎 (𝑄out)𝑏. (A) Measured pressure drop 𝛥𝑝 over the valve, as function of flow rate 𝑄out obtained in quasi-static experiments, under pressure control for the
fully open state, and under flow control in the regulation mode. Different colors refer to six specimens of the same valve design. 𝑎 and 𝑏 are mean fitting
parameters for six valves, for the open state behavior. (B) Measured pressure drop 𝛥𝑝 over a needle (length 𝐿 = 1.27mm, internal diameter 𝐷 = 1.54mm), as
function of flow rate 𝑄out, obtained in a quasi-static experiment under flow control.

Fig. 20. Experiment of quasi-static pressure drop as function of outflow rate 𝛥𝑝(𝑄out) for extended range of flow rates compared to Fig. 3. (A) One representative
sample. All curves, i.e., the closed (light red curve) and fully open (light and solid green curves) states, as well as pressure regulation mode (light and solid
black curves) are obtained in the same quasi-static experimental setup using a pressure regulator connected to the valve holder. Solid black and green data
represent extended flow rate range. (B) Seven samples.

understanding of this relation could be valuable in applications where small imperfections between multiple valves affect activation
patterns of multiple actuators (Van Laake et al., 2022).

We focus on the development of a minimal model, ultimately geared towards promoting one or the other mode in our hysteretic
valves. However, we notice that our system shows behavior that may be interesting for more fundamental future studies, as well.
The valve in its oscillating mode slows down considerably as we increase the inflow rate, until it stops oscillating. Potentially, our
valve could provide an interesting platform for studying dynamics around critical points (Gomez et al., 2017).

Finally, we note that circuits with hysteretic valves, and fluidic circuits in general, are increasingly used to control fluid-driven
soft robots (Vasios et al., 2020; Van Laake et al., 2022; Park et al., 2022; Jin et al., 2023; Mahon et al., 2019; Hubbard et al., 2021;
Song et al., 2021; Hoang et al., 2021; Napp et al., 2014; Park et al., 2022; Teichmann et al., 2023; Zhai et al., 2023; Rothemund
et al., 2018; Drotman et al., 2021; Decker et al., 2022; Overvelde et al., 2015; Van Raemdonck et al., 2023; Wehner et al., 2016;
Gorissen et al., 2020). Multidisciplinary studies (mechanics, fluidics, and dynamics) like the present one, may contribute to better
understanding of system-level behavior in such fluidic circuits. For example, a bistable valve that can create fluidic oscillations
from a continuous (pressure) input has been observed to stop oscillating under certain conditions, like our valve (Rothemund et al.,
2018). The methods and models developed in the present work may provide insights into that behavior, or can otherwise at least
indicate which kind of additional experiments should be performed to better explain its fundamentals. This is especially important
in the field of soft robotics, where embodied intelligence and safe interaction with humans are important claimed benefits, while
formal robustness and other performance criteria are still underdeveloped. As a result of the present study, we better understand
24
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Fig. 21. Experimental setup for probing valve hysteresis. (A) overview of the setup. The valve (not visible) is mounted inside the holder with its convex side
up. The holder and probe are 3D-printed (VeroClear, Stratasys). The probe is fitted with a length of shrink tube to increase friction. (B) Probe design.

stability criteria of the regulation mode in a specific type of hysteretic valves. This may contribute to the reliability of future soft
robotic applications such as autonomous walking robots, and medical prosthetic devices.
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Fig. 22. Displacement-controlled loading experiment of the valve, where we vary the maximum displacement 𝑥max of the probe. (A) Measured reaction force 𝐹
as function of probe displacement 𝑥 for different values of 𝑥max. A single representative loading curves (gray) is for all values of 𝑥max overlap, unloading curves
are colored by 𝑥max according to the legend. (B) Loading curve (gray) and two representative unloading curves, one for probing with low displacement (purple),
and one for high displacement (yellow). (C) Full loading/unloading trajectories for increasing values of 𝑥max (from left to right). Circular markers indicate local
maxima.

Fig. 23. For different values of 𝑥open and 𝜓 , we determine 𝑐i, and 𝑠∞ by fitting to measured values 𝛥𝑝(𝑄in). Here, we show the resulting values for the (inverse)
valve conduction 1∕𝑐i (

√

𝑘𝑃𝑎∕SLPM), and slope 𝑠∞ (SLPM/
√

𝑘𝑃𝑎/mm) for 𝑥open = 1mm.

Appendix. Additional figures

See Figs. 18–23.
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